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Abstract 
 

This paper uses a ten-year data set to examine the ability of the jump-diffusion models to 
explain systematic deviations in implicit distributions from the benchmark assumption of 
lognormality. Scott’s (1997) calibrations found that stochastic interest rates should not 
affect short-maturity stock option prices much. Using transactions data from the 
Philadelphia stock exchange (PHLX) for European call and put currency options on the 
Deutschmark, the Japanese yen and sterling, over the period July 1984 to August 1989 
and from March 1995 to December 1999, this study provides a robust proof that 
stochastic interest rates do affect short maturity currency options. The results are 
consistent with and incremental to Doffou and Hilliard (2002).   

 
 

1. Introduction 
 

Currency option pricing models premised on the Black-Scholes assumption of geometric 
Brownian motion exhibit severe specification error when fitted to market data. 
Systematic pricing errors, or equivalently, different implicit volatilities for different strike 
prices and maturities, are repeatedly found. Jumps do add to fat tails and jumps do 
provide likelihood to large changes in short time intervals. Most of recent attention has 
focused on the so-called “volatility smile”, or U-shaped pattern in implicit volatilities for 
different strike prices; e.g., Cao (1992) study of foreign currency options over the period 
1987-89; Bollen and Raisel (2003) study of the alternative valuation models in the OTC 
currency option market; Carr and Wu (2004) study of the stochastic skew in currency 
options over the period 1996-2004; and Madan and Daal (2004) variance-gamma model 
for foreign currency options. The existence of specification error shows that the 
conditional distributions implicit in foreign currency option prices deviate substantially 
from the Black and Scholes benchmark assumption of lognormality.    
 
Merton (1976) argued that a change in asset price can be split into two parts: a normal 
small change explained by a geometric Brownian motion, and an abnormal large change 
in price that can be modeled by a jump process. Indeed, the jump-diffusion stochastic 
process has been used to model large price changes that induce a fat-tailed distribution 
relative to the normal [see Jorion (1989), Ball and Torous (1985), Chacko and Das 
(2002), and Dupoyet (2004)].  
 
Merton’s (1976) jump-diffusion model allows for diversifiable jump risk. Scott (1997) 
results indicate that in a jump-diffusion model, the inclusion of stochastic interest rates 



 2

adds little to the stock option prices. This is because jump risk is not priced by the market 
for stock options. When jump risk is systematic, general equilibrium models are 
necessary to derive option pricing formulas [see Bates(1991, 1996), Naik and Lee (1990),  
Perraudin and Sorensen (1994), and Dupoyet (2004)]. Bates’ (1991, 1996) model 
permitted systematic jump exchange risk and derived the correct functional form of the 
market price of risk. 
 
This study extends Doffou and Hilliard (2002). The idea is to verify if the result achieved 
in Doffou and Hilliard (2002) only based on a one-year data set can be sustained if the 
same methodology is applied to a large data set that spreads over a ten-year period. 
Hence, the objective of this paper is to test the robustness of the result in Doffou and 
Hilliard (2002). The out-of-sample performance of the jump-diffusion stochastic interest 
rate model is tested on a ten-year data set for pricing sterling, Deutschmark and Japanese 
yen currency futures options. The results are contrasted with those obtained by applying 
the same tests to Black’s (1976) and Bates’ models. In all three models tested, the results 
show that the jump-diffusion option pricing methodology explains the volatility smile 
and the strike price bias obtained in using Black’s model based on a geometric Brownian 
motion assumption. Finally, the results show that stochastic interest rates do make a 
difference for short-maturity option prices. For example, as seen in Table B, for all  
Deutschmark call options, Black’s model has a mean absolute percentage error of 22.63, 
Bates’ has 7.79, and Doffou and Hilliard’s has 4.71. 
 
The paper is organized as follows. The next section describes the jump-diffusion 
stochastic interest rate model for pricing European currency futures options. The third 
section describes the data used. The estimation methodology is explained in the fourth 
section. The test results of pricing out-of-sample European currency futures options are 
presented in the fifth section, and the final section concludes the paper. 
 

2.   The Model 
 
The jump-diffusion model used here is that developed by Doffou and Hilliard (2001), 
which can handle large price changes plus a smooth lognormal component. The focus is 
on options on a single short-term futures contract. Hence, the critical input to pricing 
short-term currency futures options is the assumption of a stochastic process for futures 
prices that generate a non-lognormal distribution. The domestic and foreign short interest 
rates, dr  and fr , are assumed to follow the risk-neutralized stochastic processes 
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where ddZ  and fdZ  are increments to a standard Brownian motion, dσ  and fσ  are 

constant volatilities, and dk  and fk  are the speeds of adjustment related to the domestic 

and foreign interest rates, respectively. The terms ( )ν,tf  and ( )ν,* tf  correspond to the  
instantaneous forward rate at time t  for date t>ν . The partial derivatives with respect 
to ν  of ( )ν,tf  and ( )ν,* tf  are ( )νν ,tf  and ( )νν ,* tf , respectively. 
 
The spot exchange rate (US$/foreign currency) follows a stochastic differential equation 
with (possibly asymmetric) random jumps: 
 
                   [ ] *****/ dqkdZdtkrrSdS SSmfd ++−−= σλ                                     (3) 

where SZ  is a standard Wiener process, Sσ  is the instantaneous variance conditional on 

no jumps, and *k  is the risk-adjusted random percentage jump conditional on a Poisson-
distributed event occurring, where  *1 k+  is lognormally distributed: 
 
     ( )*1ln k+  ~ ( )[ ]22* ,5.01ln δδ−+ mkN   

   

 

with ( ) **
mkkE ≡ . The risk-adjusted frequency of Poisson events is *λ , and *q  is a 

Poisson counter with intensity *λ : ( ) dtdqob ** 1Pr λ==  and ( ) dtdqob ** 10Pr λ−== . The 
spot exchange rate process is similar to the geometric Brownian motion process most of 
the time, but on average λ* times per period the price jumps discretely by a random 
percentage. Jump random variables are uncorrelated, i.e, ( ) 0,cov ** =kdq , 

( ) ( ) 0,cov,cov ** == kdZdqdZ SS , ( ) ( ) 0,cov,cov ** == kdZdqdZ dd , and 
( ) ( ) 0,cov,cov ** == kdZdqdZ ff .   

 
The risk-neutralized process for the futures price is derived from Doffou and Hilliard 
(2001) as follows: 
                                        ****/ dqkZdtkFdF Fm ++−= σλ                                      (4)            
where 
    ( ) ( ) ( ) ( )τρσστστσστρρρσσσσ dSddSffddSfddfSfSdfdS HHHkk 2,,,,,,,, 222222 +++=  
                                                                       ( ) ( ) ( )ττρσστρσσ fddffdfSffS HHH 22 −−    
                                                                                                                                         (5) 

and    ( ) d
tk

d keH d /1 −−=   ,      ( ) f
tk

f keH f /1 −−=       
and   tT −=τ   is the time-to-maturity of the futures contract.    
The solution of equations (1), (2), and (4) for European currency futures call / put option 
is a generalization of Bates’ (1991) formula [see Doffou & Hilliard (2001)]. The values at 
time t for European call and put options that expire at time T1 on a futures contract that 
expires at time T are respectively 
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The scaling factor Z(t, T1, T) shifts the mean of the implicit distribution because of 
exchange rate and interest rate correlations. Option pricing at the expected discounted 
terminal payout is not the same as the discounted expected terminal payout under 
stochastic interest rates. This scaling factor explains the key empirical difference between 
this general model and Bates (1991, 1996) model. It takes the value of one when the 
domestic interest rate is constant ( 0=dσ ). Another difference between this general 
model and Bates’ model is the term structure of implied volatilities which is not explored 
here because only one option maturity is considered at any given time. The values of the 
scaling factor under stochastic interest rates are provided in Doffou and Hilliard (2002), 
table 1, page 52. The detailed computation of the integral of the futures return variance, 
ν2(t, T1, T), over the life of the option is given in Doffou and Hilliard (2001), equations 
(23) and (24). When ν2 is replaced by 1

2τσ S  and Z(t, T1, T) = 1, special cases of equations 
(6) and (7) give the Bates (1991, 1996) futures call and put formulas. When 

0** === δλmk , special cases of equations (6) and (7) give the Black (1976) call and put 
formulas. The price at time t of the domestic zero-coupon bond maturing at time T is 
P(t,T).  
 
Bates’ and Black’s formulas use the spot exchange rate volatility as a proxy for futures 
price volatility and therefore assume the term structure of futures volatility to be flat. The 
proposed model (Doffou and Hilliard’s model) adequately predicts the difference 
between spot and futures volatility at different futures maturities. The futures call and put 
option prices given in equations (6) and (7) do not depend directly on the three state 
variables of the model, but they depend indirectly on these state variables through the 
level of the exogenous futures price F(t, T).  
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The mean jump size, *
mk , affects the skewness, while the jump frequency parameter *λ   

shapes mostly the kurtosis of the distribution of futures price generated by the diffusion  
equation (4). A positive/negative mean jump size creates a fatter right/left tail in the 
distribution. In Merton (1976b) and subsequent applications of that model such as Ball 
and Torous (1985), the value of the mean jump size is set at zero, assuming a symmetric 
distribution. In this paper, the mean jump size parameter *

mk  takes different non-zero 
values necessary to explain the asymmetric (skewed) distribution of currency futures 
prices. Different values of the average jump size *

mk  and the jump frequency parameter 
*λ  generate various shapes for the distribution of futures prices as in Das and Baz (1996). 

The proposed model appears robust enough to explain most pricing bias generated when 
using the Bates’ or Black’s model.  
 
To run the empirical tests, the risk-neutralized jump-diffusion parameter vector, 

[ ]δλσβ ,,, **
mk= , and the exogenous variables to the futures call and put option pricing 

formula are needed. These exogenous variables are: the current futures price F(t, T), the 
option strike price X, the domestic interest rate rd, the domestic bond price P(t, T1), the 
time-to-maturity of the option τ1 = T1 – t, the time-to-maturity of the futures contract τ = T 
– t, the expiration dates of the option and the futures contract, T1 and T, respectively, and 
the current time t.  
 

3.   The Data 
 
Transactions data from the Philadelphia stock exchange (PHLX) for European call and 
put currency options on the Deutschmark, the Japanese yen and the sterling are used. The 
data consist of the time and price of every transaction in which the price changed from 
the previous transaction for the period July 1984 to August 1989 and from March 1995 to 
December 1999. Because the out-of-sample performance of the proposed model is tested 
here, the model parameters must be estimated using a data set that is outside the time 
period of the data set used to test the model. The model parameters are estimated in 
Doffou and Hilliard (2002) using monthly exchange rate and short term interest rate data 
from September 1989 to February 1995.  
 
Currency futures contracts are available for March, June, September, and December 
expiration dates, with delivery taking place on the third Wednesday of the month.  The 
last trading day is the third business day before delivery. Options are traded on all four 
contracts. Bid and ask data were discarded since no transactions were conducted at those 
prices. Only contracts of a single maturity are considered for any day: namely, quarterly 
contracts with maturities between one and four months. Longer maturities were too thinly 
traded, and shorter maturities were too close to the maturity date to contain enough 
information about implicit distributions. To avoid days with thin trading, at least 20 call 
and 20 put transactions are required for any given day’s data to be retained. Transactions 
in at least four strike classes for calls and four for puts are required to ensure a range of 
“moneyness” sufficient to provide a good picture of the underlying distribution.  Deep-in-
the-money and deep-out-of-the-money call and put options, defined as those with prices 
less than 5 cents, are deleted from the sample. For these options, the bid-ask spread is a 
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big proportion of their time value. Therefore, their implied volatilities would be highly 
sensitive to the bid-ask bounce.    
 
For each option, its specific underlying futures contract is used. The nearest futures 
transaction of comparable maturity preceding each option transaction is used as the 
underlying futures price. Currency futures contracts maturing close to concurrently with 
the PHLX European options on currency spot and traded on the International Monetary 
Market (IMM) at the Chicago Mercantile Exchange (CME) are used.  This market is 
liquid and the exchange keeps a record of all transactions, called the “IMM Statistics 
Department Quote Capture Report”. Although it is not possible to match a PHLX 
European option on currency spot trade with a trade on the corresponding PHLX 
currency contract, it is possible to closely match this option on currency spot trade with a 
currency futures price quotation on the IMM. 
 
To synchronize the data, only those pairs of option/futures ranging less than five minutes 
apart are used. The time lapse between the futures and options transactions averages 
about 30 seconds for Deutschmark, Japanese yen and sterling options. Outliers are not 
purged from the sample, consistent with the assumption of a jump process.  
All of the above criteria eliminate 213 out of 1908 trading days for Deutschmark futures 
options, 545 out of 1724 trading days for Japanese yen futures options, and 307 out of 
1952 trading days for sterling futures options. For all three currencies and 40 contracts 
considered, 4519 days are selected for parameter estimation. The daily risk-free interest 
rate is computed from the prices of Treasury bills maturing close to the maturity of the 
option.  The sample data decomposition is provided in Table A.    
 

4.   Estimation 
 
4.1   Estimation of parameters not related to the jump-diffusion process 
 
The estimation methodology mimics the one in Doffou and Hilliard (2002). The 
parameters of interest are the domestic short interest rate term structure inputs kd and σd, 
the foreign short interest rate term structure inputs kf and σf, the coefficient of correlation 
between the domestic and foreign short rates, ρdf, the coefficient of correlation between 
the spot exchange rate and the domestic short rate, ρsd, and the coefficient of correlation 
between the spot exchange rate and the foreign short interest rate, ρsf.  
 
To estimate these parameters, monthly exchange rate data are taken from the 
International Financial Statistics for 65 observations from September 1989 to February 
1995. The annualized domestic (US) and foreign short-term interest rate series, rd and rf, 
are taken from the International Currency Review. The exchange rates, S, are in dollars 
per unit of foreign currency. Treasury bill rates are used for the US and Britain; call 
money rates are used for Germany and Japan.  
 
The spot domestic and foreign interest rates for three, six, and twelve months are taken 
from The Financial Times because they were not available in the International Currency 
Review. The six-month forward rates starting at the end of month six, and the nine-month 
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forward rates starting at the end of month three, are computed using these observable 
domestic and foreign spot interest rates. All the aforementioned parameters are computed 
for the Deutschmark, sterling, and the Japanese yen. The speeds of adjustment, K, are 
estimated every day from daily term structures. The results of the non-jump-related 
parameters estimates are provided in Doffou and Hilliard (2002), Tables 3 and 4. The 
covariance matrices of the spot exchange rate, the domestic interest rate, and the foreign 
interest rates, for each of the currencies considered, are available in Doffou and Hilliard 
(2002), Table 3, page 56. Estimates for the coefficients of correlation, ρdf, ρds, and ρsf, are 
derived from this same Table 3, page 56. The values of the speeds of adjustment, Kd and 
Kf, the interest rate volatilities, σd and σf, are provided in Doffou and Hilliard (2002), 
Table 4, page 57, and are estimated by solving the generalized Vasicek bond pricing 
equation. The estimation technique used is consistent with equations (1), (2), and (3), and 
is explained in Doffou and Hilliard (2002), at the bottom of Table 4, page 57. The speeds 
of adjustment are solved using a non-linear system of equations module available in 
Gauss. The exchange rate and interest rate parameters change daily. Hence, they are 
estimated periodically (daily, weekly, or monthly) to test the model. The interest rate 
process parameters in Doffou and Hilliard (2002), Table 4, Page 57, are estimated daily. 
 
4.2   Estimation of the jump-diffusion parameters 
 
The estimation method used here is the one described in Doffou and Hilliard (2002). The 
method consists in implying the jump-diffusion parameters using the option pricing 
formula and transaction data on futures and futures options. The proposed three-state 
model requires four parameters as inputs. The parameters of the model can be estimated 
even by using a short time series of past data. Basically, the estimation can be done with 
data from any interval which has a sufficient number of trades. The implied estimation 
technique eliminates partially the problem of preferences, requires no further assumption 
about utility function, and gives the risk-neutralized version of these parameters. The 
technique for extracting the parameters of the model parallels that used for extracting 
implied volatility with Black’s model. The four parameters of the risk-neutralized process 
are implied by minimizing the sum of the squared errors of all options in the sample as 
follows 

                                 ( ) ( )[ ]∑∑
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where ti,ε  is the pricing error for each option given by 
 
             ti,ε   =  Vi,t – V(Fi,t , Xi,t , τt, rt; β),    i = 1,....., in ;   t = 1,….., tn                    (9)  
 
where Vi,t is the ith observation of the market-observed futures option price on day t,  

[ ]δλσβ ,,, **
mk=   is the vector of unknown parameters in the model, and σβ =   is the 

volatility parameter in Black’s model. The vector of unknown parameters for the 
proposed model has the same appearance as that in Bates’ model except that *

mk , *λ , and 
δ  have different values due to the fact that the scaling factor Z(t, T1, T) is not constrained 



 8

to one as is the case in Bates’ model. The V(.) function is given by the proposed model, 
then by Bates’ and Black’s option pricing formula. The number of trading days in the 
estimation sample used is nt, and ni represents the number of observations in the sample 
per trading day. The performance of the models as asset pricing tools is tested using only 
out-of-sample data. 
 

5.   Out-of-sample pricing performance 
 
5.1   Tools of performance measurement 
 
An option pricing model out-of-sample performance is measured by the stability of the 
parameters and the accuracy of the parameter estimates. A test of the out-of-sample 
performance of an option pricing model is a test of how slowly the parameters change 
over time. The pricing biases of the proposed model (Doffou and Hilliard’s model) are 
compared to those generated by Bates’ and Black’s models using the mean relative 
percentage option pricing error (MRE) and the mean absolute percentage option pricing 
error (MARE) as in Doffou and Hilliard (2002). These statistics are computed below: 
  

( ) i

n

i
ii VVV

n
MRE /1

1

*∑
=

−=                                                                      (10) 

            ( )∑
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where the price of the option observable in the market is iV , and the option price given by 
the model is *

iV . The number of options in an option class characterized by moneyness, 
time-to-maturity, estimation delay, and contract month is n. The estimation delay is the 
number of days the model can be used before its parameters can be re-estimated. The 
MRE statistic is more appropriate for testing model pricing bias for a specific option 
class. If the model prices a class of option accurately, the MRE will converge to zero in 
that class as the number of options increases.  
 
A regression analysis is used to investigate the effects of moneyness and maturity on 
pricing bias. The regression equation is 
 

( ) ( ) iiiiii XFXFPE εταταααα +++++= 2
54

2
321 //  , ni ,,.........1=             (12) 

 
where iii VVPE −= *  is the dependent variable, a measure of the option pricing error for 
each observation, and given by the difference between the model price and the market 
price.  The independent variables are the moneyness, F/X, and the time-to-maturity, τ.  
The squared terms of the moneyness and the time-to-maturity are included in the 
regression to examine non-linear relationships. The regression is run over the entire 
sample but separately for calls and puts. This is a cross-sectional regression. Therefore, 
the standard errors are computed using the White heteroscedasticity consistent estimator.  
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5.2   Results            
 
The mean absolute percentage pricing errors (MARE) for futures options on the 
Deutschmark, sterling, and Japanese yen by moneyness and time-to-expiration, expressed 
in days are shown in Tables B, C, and D. This statistics is computed for the proposed 
three-state model as well as for Bates’ and Black’s models. The model parameters are 
estimated with data from Mondays and tests are performed on Tuesday’s prices, with a 
one-day lag. The results are consistent with Doffou and Hilliard (2002). For all classes of 
options, regardless of the moneyness and the time-to-expiration, the three-state model 
performs better than Bates’ model which in turn performs better than Black’s model, for 
all three currencies examined.  Using the MRE statistics leads to the same conclusion.  
For the proposed model and Bates’ model, the larger errors occur for out-of-the-money 
options because options in the tails of the distribution are more sensitive to the non-
stationarity of the distribution. This is an indication that the distributions for currency 
futures options are positively skewed. This finding contrasts recent empirical work on 
S&P500 Index options indicating that the implied distribution of the S&P500 Index is 
more negatively skewed than the lognormal. 
 
Table E shows the mean absolute percentage pricing errors for futures options by 
moneyness and estimation delay, in days, for the Deutschmark. The estimation delay is 
introduced to test the stability of the parameter estimates within the trading week. The 
MARE are computed for the proposed three-state model as well as for Bates’ and Black’s 
models. For all estimation lags and strike price classes, the jump-diffusion stochastic 
interest rates model or three-state model performs far better than Bates’ model, which in 
turn performs better than Black’s model. For the proposed model, the larger errors occur 
with out-of-the-money calls and out-of-the-money puts. The numbers show that the in-
the-money options are least sensitive to changes in the parameters of the underlying price 
process. For all three currencies considered, the MARE are greater for the four-day 
estimation lag than for the one-day estimation lag for deep-in-the-money call options 
(F/X > 1.05) and for deep-in-the-money put options (F/X < 0.95). These pricing errors 
computed are conditional on the realized exchange rate one to four days hence. 
 
The results of the cross-sectional regressions of the pricing errors for Deutschmark 
European futures options appear in Table F. The R2 or coefficient of determination of the 
regressions for both the three-state model and bates’ model is very small.  Beside a very 
low explanatory power supported by a very low R2, the F-statistic for both Bates’ and the 
three-state models is low. To be statistically significant, a regression equation coefficient 
must be statistically significant for both call and put. Hence, systematic pricing errors 
relative to moneyness and time-to-maturity have been eliminated from pricing errors in 
these models. For Black’s model, the time-to-maturity regression coefficients are not 
statistically significant while the moneyness coefficients are statistically significant. 
Moreover, the F-statistic for Black’s model is very high. Therefore, moneyness is a good 
explanatory variable for pricing bias in Black’s model, while time-to-maturity is not. 
These results are the same for all three currencies examined and are consistent with 
Doffou and Hilliard (2002). 
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6. Conclusions 
 

This work analyzes the out-of-sample performance of Black’s (1976), Bates’ (1991, 
1996) and Doffou and Hilliard (2001) models for pricing European currency futures 
options in a Deutschmark, sterling and Japanese yen futures market, using a ten-year data 
set. Black’s model systematically misprices options in the sample examined. Doffou and 
Hilliard (2001) model outperforms both Bates’ and Black’s models, and Bates’ model 
performs better than Black’s model. The results show that the performance improves for 
both Doffou and Hilliard’s model and Bates’ model when the parameters are re-estimated 
daily. These two models incorporate jumps in the spot exchange rate and have parameters 
that are not stationary over time. 
 
The jump frequency parameter, *λ , and the mean jump size parameter, *

mk , are estimated 
but not reported here, and are persistently positive for all estimation days and for all three 
currencies examined. Therefore, the US$/Deutschmark, US$/sterling and US$/Japanese 
yen skewness premium is positive. This positive skewness premium is explained by the 
correlation between the exchange rate and volatility shocks, and is an indication of a 
relative strength of the dollar in the period examined. These results confirm that the 
distribution of changes in futures prices is more positively skewed and more leptokurtic 
than the normal distribution. This explains why Black’s model underprices out-of-the-
money puts and overprices out-of-the-money calls. 
 
The results are incremental to Doffou and Hilliard (2002) and are a robust proof that 
stochastic interest rates strongly affect short-maturity currency option prices. Scott (1997) 
results indicate that in a jump-diffusion model, the inclusion of stochastic interest rates 
adds little to stock option prices. This, because Merton (1976) proves that jump risk is 
unsystematic for stock options. Hence, jump risk for stock options is diversifiable, that is 
not priced by the market. The intuition behind this is that positive jumps and negative 
jumps cancel out over time for stock options. This is not the case for currency options. 
Bates (1991, 1996) shows that jump risk is not diversifiable for currency options and 
derives the correct functional form of the market price of risk. Hence, jump risk is 
systematic for currency options and does matter. Because jumps do not cancel out over 
time for currency options, they are affected by stochastic interest rates. The results also 
show that the random volatility inherent in the Bates model is not as important as the 
random interest rates in the proposed model for currency options. Doffou and Hilliard 
(2001) model provides the skewness and kurtosis required to fit the empirical distribution 
better than Bates’ model and far better than Black’s model. 
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Table A:  Analysis Of The Sample 
______________________________________________________________________________________ 
                                                  Mean number       Mean number       Mean number       Mean number          
                          Days              of matched calls      of matched puts    of sample calls      of sample puts 
Contract      DM   £   ¥           DM      £       ¥         DM     £      ¥          DM     £      ¥         DM    £      ¥            
 
Sept 84-88      398      247      1121.2       969.8     381.1        302.5       227.3       181.1      146.4     105.3 
         95-99            379                    1108.5                     379.3                       233.6                      140.1 
 
 
Dec  84-88      302      294       823.7        648.4      342.2       158.8        357.1      293.8      163.9     109.1  
        95-99            362                    757.3                       312.8                       368.2                      170.6 
 
 
Mar 85-89      437      197       741.4        687.1      351.9       333.6        229.2      197.7      117.6       94.7 
         95-99           394                     729.6                        355.3                       211.5                     105.1 
 
 
June 85-89     558      441        1368.6     1196.6     653.2       547.9        526.6      365.3      297.7    186.2 
         95-99           510                      1348.4                     643.4                        517.1                    283.5 
 
 
All                  1695    1179      1013.7      875.4      432.1       335.7         335.1     259.5      181.4     123.8            
                             1645                     985.9                      422.7                        332.6                    174.8 
 
The number of days for which the sample was large enough for estimation (at least 20 call and 20 put 
transactions) is represented by “Days”. The mean for each contract of the daily number of calls and puts 
matched to an underlying futures transaction are called “matched calls” and   “matched puts”. The mean for 
each contract of the daily number of calls and puts used for estimating equation (9) are “sample calls” and 
“sample puts”. The total for the days column and the average for the other columns are shown in the last 
row. 
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Table B: Deutschmark Pricing Errors By Moneyness And Time-To-Maturity                         
                                                      D & H model           Bates’ model         Black’s model 
                                                      Calls     Puts             Calls     Puts          Calls      Puts .   
 
τ  ≤  30 
        F/X ≤ 0.950                           7.06       4.62             9.11       5.33         29.41         7.21 
        0.95 < F/X ≤ 0.980               6.43       4.45             7.39       5.12         13.32         7.17 
        0.98 < F/X ≤ 1.020               5.31       5.19             6.69       6.18         11.13         8.79 
        1.02 < F/X ≤ 1.050               4.28       6.33             6.47       7.51         11.71       14.56 
        1.05 < F/X                            3.52       9.38             5.69       10.43       11.37       27.11 
        All F/X                                  4.38       6.12             8.09       7.67         18.24       14.13 
 
30  <  τ  ≤  60.0 
        F/X ≤ 0.950                           7.27       4.38             9.24       5.31         33.35        9.46 
        0.95 < F/X ≤ 0.980               6.39       4.17             7.12       5.22         17.48        9.19 
        0.98 < F/X ≤ 1.020               5.28       4.72             6.44       5.69         15.33       10.22 
        1.02 < F/X ≤ 1.050               3.66       6.17             5.21       7.28         15.51       16.13 
        1.05 < F/X                            3.49       9.11             5.62       10.14       14.86       29.09 
        All F/X                                  4.72       5.55             7.73       6.81         23.17       16.11 
 
60  <  τ  ≤  90.0 
        F/X ≤ 0.950                           8.12       5.69            10.41      6.37         33.09       13.59 
        0.95 < F/X ≤ 0.980               6.61       5.53             8.19       6.13         17.11       13.27 
        0.98 < F/X ≤ 1.020               5.93       5.71             7.64       6.38         15.27       14.33 
        1.02 < F/X ≤ 1.050               5.08       7.25             7.13       8.21         15.47       20.61 
        1.05 < F/X                            4.24      10.39            6.67       11.11       15.21       33.39 
        All F/X                                  6.31       7.17             8.79       8.48         23.39       20.22 
 
90 < τ             
        F/X ≤ 0.950                           6.49       4.51             8.81       5.27         33.28       12.58 
        0.95 < F/X ≤ 0.980               4.37       4.28             6.53       4.92         17.19       12.17 
        0.98 < F/X ≤ 1.020               4.88       4.93             6.14       5.68         14.79       13.79 
        1.02 < F/X ≤ 1.050               3.49       6.27             5.33       7.39         15.26       19.43 
        1.05 < F/X                            3.13       8.35             4.96       10.21       14.91       32.31 
        All F/X                                  4.37       5.12             7.27       6.81         22.98       19.08 
 
All  τ       
        F/X ≤ 0.950                           7.54       4.65             9.48       5.61         33.13       11.71 
        0.95 < F/X ≤ 0.980               5.22       4.31             7.25       5.42         17.23       10.83 
        0.98 < F/X ≤ 1.020               5.14       4.72             6.66       6.21         14.77       12.19 
        1.02 < F/X ≤ 1.050               4.33       6.29             6.17       7.82         14.96       18.28 
        1.050 < F/X                          3.82       8.40             5.89       10.91       14.73       30.37 
        All F/X                                  4.71       5.53             7.79       7.49         22.63       18.21  
D & H model stands for Doffou and Hilliard jump-diffusion stochastic interest rates model. 
Results are mean absolute pricing errors for PHLX Deutschmark European futures options by 
moneyness, F/X, and time-to-maturity, τ, in days. Transaction periods are 7/1/84 to 8/31/89 and 
3/1/95 to 12/30/99. All 40 contracts are included. Data are estimated on Mondays and the models 
tested on Tuesdays.  
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Table C: Sterling Pricing Errors By Moneyness And Time-To-Maturity. 
                                                      D & H model           Bates’ model        Black’s model 
                                                      Calls      Puts           Calls      Puts         Calls       Puts  
τ  ≤  30 
         F/X ≤ 0.950                          8.12       5.34            10.28      6.53          30.09      8.63   
         0.95 < F/X ≤ 0.980              7.59       5.21              8.68      6.61          14.53      8.27 
         0.98 < F/X ≤ 1.020              6.33       6.13              7.74      7.31          12.42      9.69 
         1.02 < F/X ≤ 1.050              5.17       7.29              7.38      8.79          12.47      15.27 
         1.05 < F/X                           4.20       10.61            6.46      11.45        12.91      28.04 
         All F/X                                 5.39       7.38              9.23      8.81          19.87      15.35 
 
30  <  τ  ≤  60.0    
         F/X ≤ 0.950                          8.21       5.48             10.37     6.33          34.52      10.69 
         0.95 < F/X ≤ 0.980              7.46       5.17               8.19     6.11          18.53      10.37 
         0.98 < F/X ≤ 1.020              6.39       5.44               7.58     6.66          16.19      11.58 
         1.02 < F/X ≤ 1.050              4.79       7.27               6.83     8.31          16.53      17.42 
         1.05 < F/X                           4.51       10.22             6.71     11.23        15.68      30.19 
         All F/X                                 5.72        6.78              8.49     7.92          24.22      17.51 
 
60  <  τ  ≤  90.0                                     
         F/X ≤ 0.950                          9.28       6.49             11.51     7.73          34.15      14.82 
         0.95 < F/X ≤ 0.980              7.34       6.23               9.19     7.40          18.29      14.49 
         0.98 < F/X ≤ 1.020              6.49       6.74               8.58     7.93          16.34      15.77 
         1.02 < F/X ≤ 1.050              6.04       8.18               8.07     9.71          16.11      21.81 
         1.050 < F/X                         5.17       11.39             7.41     12.39        16.07      34.50 
         All F/X                                 7.23       8.19               9.68     9.25          24.61      21.67 
 
90  <  τ                  
         F/X ≤ 0.950                          7.43       5.39               9.62     6.54          34.28      13.69 
         0.95 < F/X ≤ 0.980              5.28       5.06               7.37     5.08          18.11      13.18 
         0.98 < F/X ≤ 1.020              5.71       5.69               7.09     6.27          15.10      14.31 
         1.02 < F/X ≤ 1.050              4.58       7.13               6.14     8.68          16.57      20.48 
         1.05 < F/X                           4.19       9.29               5.15     11.37        15.12      33.27 
         All F/X                                 5.68       6.17               8.59     7.27          23.13      20.18 
 
All  τ             
         F/X ≤ 0.950                          8.21       5.69               10.08   6.59          34.28      12.21 
         0.95 < F/X ≤ 0.980              6.73       5.17                8.38    6.27          18.14      11.53 
         0.98 < F/X ≤ 1.020              6.17       5.58                7.54    7.16          15.39      13.69 
         1.02 < F/X ≤ 1.050              5.21       7.47                7.08    8.61          15.83      19.31 
         1.05 < F/X                           4.11       9.09                6.68    11.27        15.33      31.72 
         All F/X                                 5.35       6.52                8.33     8.21         23.23      19.31 
D & H model stands for Doffou and Hilliard jump-diffusion stochastic interest rates model. 
Results are mean absolute percentage pricing errors for PHLX sterling European futures options 
by moneyness, F/X,  and time-to-maturity, τ, in days. Transaction periods are 7/1/84 to 8/31/89 
and 3/1/95 to 12/30/99. All 40 contracts are included. Data are estimated on Mondays and the 
models tested on Tuesdays. 
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Table D: Japanese Yen Pricing Errors By Moneyness And Time-To-Maturity. 
                                                     D & H model             Bates’ model         Black’s model 
                                                      Calls      Puts             Calls      Puts         Calls      Puts  
τ  ≤  30 
        F/X ≤ 0.950                           9.18       6.69              11.19     7.28           31.11    9.71 
        0.95 < F/X ≤ 0.98                 8.31       6.28                9.69      7.18          15.61    9.11 
        0.98 < F/X ≤ 1.020               7.04       7.01                8.57      8.24          13.21    10.26 
        1.02 < F/X ≤ 1.050               6.49       8.33                8.20      9.70          13.41    16.62 
        1.05 < F/X                            5.68       11.02              7.79      12.11        13.82    29.72 
        All F/X                                  6.53       8.13              10.06      9.23          21.15    16.17 
 
30  <  τ  ≤  60.0                                                                                                       
        F/X ≤ 0.950                           9.11       6.49              11.12      7.21          35.62    11.48 
       0.95 < F/X ≤ 0.980                8.15       6.13                9.51      7.13          19.81    10.99 
       0.98 < F/X ≤ 1.020                7.04       6.69                8.18      7.79          17.33    12.64 
       1.02 < F/X ≤ 1.050                5.61       8.08                7.59      9.41          17.71    18.93 
       1.05 < F/X                             5.43      10.56               7.09      12.15        16.21    31.52 
       All F/X                                   6.73      7.43                 9.28      8.64          25.52    18.49 
 
60  <  τ  ≤  90.0                             
       F/X ≤ 0.950                          10.63      7.51               12.13      8.23          35.82    15.42 
       0.95 < F/X ≤ 0.980                8.27      7.39               10.41      8.10          19.91    15.13 
       0.98 < F/X ≤ 1.020                7.38      7.71                 9.68      8.79          17.73    16.29 
       1.02 < F/X ≤ 1.050                7.03      9.36                 9.14     10.58         17.97    22.78 
       1.05 < F/X                             6.18     12.51                8.70     13.36         17.58    35.61 
       All F/X                                   8.01      9.13               10.11     10.61         25.81    22.13 
 
90  <  τ              
       F/X ≤ 0.950                            8.63      6.28               10.13       7.31         35.39    14.82 
       0.95 < F/X ≤ 0.980                6.33      6.09                 8.68       6.22         19.22    14.53 
       0.98 < F/X ≤ 1.020                6.69      7.01                 8.27       7.81         16.61    15.89 
       1.02 < F/X ≤ 1.050                5.58      8.27                 7.51       9.63         17.21    21.12 
       1.05 < F/X                             5.48     10.22                6.31      12.33        16.41    34.87 
       All F/X                                   6.58      7.29                 9.41       8.83         24.71    21.79 
 
All  τ                                                                                                                                                           
       F/X ≤ 0.950                           9.58       6.29               11.12       7.85         35.23    13.77 
       0.95 < F/X ≤ 0.980               7.38       6.01                 9.49       7.51         19.12    12.25 
       0.98 < F/X ≤ 1.020               7.10       6.18                 8.58       8.63         16.21    14.44 
       1.02 < F/X ≤ 1.050               6.23       8.17                 8.21       9.81         16.43    20.22 
       1.05 ≤ F/X                             5.15     10.33                 7.31      12.74        16.18    32.78 
       All F/X                                  6.69       7.67                 9.79      10.11        24.19    20.68 
D & H model stands for Doffou and Hilliard jump-diffusion stochastic interest rates model. 
Results are mean absolute percentage pricing errors for PHLX Japanese yen European futures 
options by moneyness, F/X, and time-to-maturity, τ, in days. Transaction periods are 7/1/84 to 
8/31/89 and 3/1/95 to 12/30/99. All 40 contracts are included. Data are estimated on Mondays 
and the models tested on Tuesdays. 
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Table E: Deutschmark Pricing Errors By Moneyness And Estimation Delay. 
                                                   D & H model            Bates’ model            Black’s model 
                                                   Calls      Puts             Calls      Puts           Calls      Puts . 
One-day estimation delay 
        F/X ≤ 0.950                         9.02      3.27              11.22      3.48            41.11      4.96 
        0.95 < F/X ≤ 0.980             5.39      3.09                6.56      3.37            11.83      3.78 
        0.98 < F/X ≤ 1.020             4.52      4.17                5.49      4.72              6.78      6.84 
        1.02 < F/X ≤ 1.050             3.69      6.65                4.15      7.79              6.99      19.22 
        1.05 < F/X                          3.10      11.34              3.37      13.49            6.18      41.37 
 
Two-day estimation delay 
        F/X ≤ 0.950                       14.19      3.31              15.71      3.58            41.31      4.92 
        0.95 < F/X ≤ 0.980             7.28      4.04                8.81      4.33            10.78      4.51 
        0.98 < F/X ≤ 1.020             6.13      5.14                6.52      6.47              8.41      9.11 
        1.02 < F/X ≤ 1.050             4.52      8.12                5.03      10.68            8.32      21.66 
        1.05 < F/X                          3.17      15.09              3.79      18.13            7.53      45.75 
 
Three-day estimation delay 
        F/X ≤ 0.950                       19.43      4.27              20.55      4.46            41.42      4.98 
        0.95 < F/X ≤ 0.980             9.06      4.54              10.69      5.17            11.32      5.79 
        0.98 < F/X ≤ 1.020             7.01      7.16                8.03      8.06            10.43      11.82 
        1.02 < F/X ≤ 1.050             4.69      11.18              5.28      13.32            9.41      26.21 
        1.05 < F/X                          3.33      16.29              3.78      18.39            7.67      47.73 
 
Four-day estimation delay 
        F/X ≤ 0.950                       19.68      4.33              22.69      4.73            41.92      4.99 
        0.95 < F/X ≤ 0.980           10.01      4.79              13.33      5.25            13.64      5.43 
        0.98 < F/X ≤ 1.020             8.12      7.55                9.14      8.71            12.22      12.77 
        1.02 < F/X ≤ 1.050             5.02      11.02              5.81      14.68          11.13      33.23 
        1.05 < F/X                          3.64      18.42              3.83      21.15            7.79      51.31 
 
All estimation delays 
        F/X ≤ 0.950                       14.42      3.69              17.79      3.91            41.22      4.57 
        0.95 < F/X ≤ 0.980             7.53      4.03                9.68      4.49            12.25      4.84 
        0.98 < F/X ≤ 1.020             6.07      6.12               7.21       6.82              9.55      9.91 
        1.02 < F/X ≤ 1.050             4.48      9.09               5.16      12.12             8.85      25.29 
        1.05 < F/X                          3.25     15.44              3.89      18.26             6.77      47.67 
D & H model stands for Doffou and Hilliard jump-diffusion stochastic interest rates model. 
Results are mean absolute percentage pricing errors for PHLX Deutschmark European futures 
options by moneyness, F/X, and estimation delay in days. Transaction periods are 7/1/84 to 
8/31/89 and 3/1/95 to 12/30/99. All 40 contracts strike classes are included in the estimation and 
testing sample. Data are estimated on Mondays and the models are tested on Tuesdays, 
Wednesdays, Thursdays, and Fridays. This table shows the stability of the parameters estimates 
within the trading week.     
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Table F: Regression Analysis Of Pricing Errors For PHLX Deutschmark European Futures 
Options. 
Regression               D & H model                    Bates’ model                Black’s model 
parameters             Calls         Puts                 Calls         Puts              Calls         Puts   .           
Intercept                - 57.92*      -3.67              - 52.83*     - 6.43            - 60.16*   - 113.38*  
                                (6.99)       (15.97)              (7.82)       (26.32)          (13.87)      (23.71) 
 
 
F/X                           89.63*       9.36                85.14*       9.11               49.79*     109.73* 
                                (11.08)     (13.01)              (11.49)     (21.57)          (20.42)      (27.69) 
 
                                    
(F/X)2                     - 71.38*     - 11.91           - 52.97*      - 11.53          - 13.88      - 99.98*                          
                                 (6.67)        (8.77)             (10.47)      (11.21)          (10.64)       (19.21) 
 
 
τ                                  2.69         7.89*               2.43           5.44*          - 0.09           0.97   
                                  (1.67)       (2.58)              (1.74)         (2.19)           (2.25)        (2.95) 
 
 
τ2                            - 9.75         - 6.22             - 7.33          - 16.79*           3.84          7.82       
                                (5.18)        (6.71)              (5.42)          (6.55)           (3.43)        (5.61) 
 
 
R2                             0.030         0.033              0.034           0.060            0.49          0.17   
 
F-test                        19.18         14.92               23.76         17.11            669.73     101.19              
 
Number of               15,644       10,025             15,644        10,025          15,644     10,025    
   observations 
The regression equation used is given below: 
 
                  PEi = α1 + α2(F/X)i  + α3(F/X)2

i  +  α4τi + α5(τi)2 + єi,           i  =  1, 2,……., n 
      
where PEi  is the pricing error of each option, F/X  is the moneyness, and  τ  is the time-to-
maturity of the option. Standard errors (not t-statistics) are in parentheses and are calculated using 
the White heteroscedasticity consistent estimator.  The regressions are run separately for calls and 
puts and cover all 40 contracts analyzed. Models are tested on Tuesdays with data from Mondays. 
Consequently, pricing errors are for Tuesdays, with parameters estimated from Monday data. The 
t-statistic is derived by dividing the regression coefficient by the standard error. Coefficients 
marked with an asterisk are statistically significant. 
 
 
 
                     


